使用Nvidia API比较AI模型:Qwen、DeepSeek、Seed-OSS和Nemotron
中级
这是一个自动化工作流,包含 11 个节点。主要使用 Set、Merge、Switch、Webhook、HttpRequest 等节点。 使用Nvidia API比较AI模型:Qwen、DeepSeek、Seed-OSS和Nemotron
前置要求
- •HTTP Webhook 端点(n8n 会自动生成)
- •可能需要目标 API 的认证凭证
分类
未分类
工作流预览
可视化展示节点连接关系,支持缩放和平移
导出工作流
复制以下 JSON 配置到 n8n 导入,即可使用此工作流
{
"id": "vwBMikFazJ8dTN7C",
"meta": {
"instanceId": "b91e510ebae4127f953fd2f5f8d40d58ca1e71c746d4500c12ae86aad04c1502",
"templateCredsSetupCompleted": true
},
"name": "使用 Nvidia API 比较 AI 模型:Qwen、DeepSeek、Seed-OSS 和 Nemotron",
"tags": [],
"nodes": [
{
"id": "2fd77eab-0817-4d39-a206-4506b5373765",
"name": "Webhook触发器",
"type": "n8n-nodes-base.webhook",
"position": [
-144,
-528
],
"webhookId": "6737b4b1-3c2f-47b9-89ff-a012c1fa4f29",
"parameters": {
"path": "6737b4b1-3c2f-47b9-89ff-a012c1fa4f29",
"options": {},
"httpMethod": "POST",
"responseMode": "responseNode"
},
"typeVersion": 2.1
},
{
"id": "1f78059c-f7a8-493c-886e-05047d83a7b4",
"name": "便签",
"type": "n8n-nodes-base.stickyNote",
"position": [
-1072,
-848
],
"parameters": {
"width": 864,
"height": 944,
"content": "# 使用 Nvidia API 比较 AI 模型:Qwen、DeepSeek、Seed-OSS 和 Nemotron"
},
"typeVersion": 1
},
{
"id": "e7f74b77-470b-49e4-a191-577afda45296",
"name": "便签说明4",
"type": "n8n-nodes-base.stickyNote",
"position": [
-192,
-848
],
"parameters": {
"color": 3,
"width": 1312,
"height": 784,
"content": "Emelia 触发器"
},
"typeVersion": 1
},
{
"id": "8a0ca7d2-f4c0-4a95-9a7a-63c9d40ef77e",
"name": "格式化响应",
"type": "n8n-nodes-base.set",
"position": [
720,
-544
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "bbfd9a05-0e6c-44cf-80e2-2a79ecb3f67a",
"name": "choices[0].message.content",
"type": "string",
"value": "={{ $json.choices[0].message.content }}"
}
]
}
},
"typeVersion": 3.4
},
{
"id": "20e9c15e-cd3d-4624-8620-5e100081bab1",
"name": "发送聚合的 AI 模型响应",
"type": "n8n-nodes-base.respondToWebhook",
"position": [
944,
-544
],
"parameters": {
"options": {}
},
"typeVersion": 1.4
},
{
"id": "0b86c542-74ce-4456-b025-07025e6f57a7",
"name": "合并 AI 模型",
"type": "n8n-nodes-base.merge",
"position": [
528,
-576
],
"parameters": {
"numberInputs": 4
},
"typeVersion": 3.2
},
{
"id": "556f837e-5958-4121-9142-f3a05b560190",
"name": "AI 模型路由器",
"type": "n8n-nodes-base.switch",
"position": [
80,
-576
],
"parameters": {
"rules": {
"values": [
{
"conditions": {
"options": {
"version": 2,
"leftValue": "",
"caseSensitive": true,
"typeValidation": "strict"
},
"combinator": "and",
"conditions": [
{
"id": "8c79834b-efde-4096-8a97-687dbaac1eaa",
"operator": {
"type": "string",
"operation": "equals"
},
"leftValue": "={{ $json['AI Model'] }}",
"rightValue": "1"
}
]
}
},
{
"conditions": {
"options": {
"version": 2,
"leftValue": "",
"caseSensitive": true,
"typeValidation": "strict"
},
"combinator": "and",
"conditions": [
{
"id": "6f423cc4-08e3-41aa-8c5a-40a2d37a248d",
"operator": {
"name": "filter.operator.equals",
"type": "string",
"operation": "equals"
},
"leftValue": "={{ $json['AI Model'] }}",
"rightValue": "2"
}
]
}
},
{
"conditions": {
"options": {
"version": 2,
"leftValue": "",
"caseSensitive": true,
"typeValidation": "strict"
},
"combinator": "and",
"conditions": [
{
"id": "b8ba2c94-78d3-4325-8dda-e139d2dad24d",
"operator": {
"name": "filter.operator.equals",
"type": "string",
"operation": "equals"
},
"leftValue": "={{ $json['AI Model'] }}",
"rightValue": "3"
}
]
}
},
{
"conditions": {
"options": {
"version": 2,
"leftValue": "",
"caseSensitive": true,
"typeValidation": "strict"
},
"combinator": "and",
"conditions": [
{
"id": "0d1a15d3-047f-4489-896e-af2c079de4ae",
"operator": {
"name": "filter.operator.equals",
"type": "string",
"operation": "equals"
},
"leftValue": "={{ $json['AI Model'] }}",
"rightValue": "4"
}
]
}
},
{
"conditions": {
"options": {
"version": 2,
"leftValue": "",
"caseSensitive": true,
"typeValidation": "strict"
},
"combinator": "and",
"conditions": [
{
"id": "634191cd-73c9-4335-987b-93e07ba7ab0f",
"operator": {
"name": "filter.operator.equals",
"type": "string",
"operation": "equals"
},
"leftValue": "={{ $json['AI Model'] }}",
"rightValue": "5"
}
]
}
}
]
},
"options": {}
},
"typeVersion": 3.2
},
{
"id": "38a42944-835b-422c-b872-b20c8f899210",
"name": "查询 Qwen3-next-80b-a3b-thinking(阿里巴巴)",
"type": "n8n-nodes-base.httpRequest",
"position": [
304,
-832
],
"parameters": {
"url": "https://integrate.api.nvidia.com/v1/chat/completions",
"method": "POST",
"options": {},
"jsonBody": "={\n \"model\": \"qwen/qwen3-next-80b-a3b-thinking\",\n \"messages\": [\n {\n \"role\": \"user\",\n \"content\": \"{{ $('On form submission').item.json['Insert your Query'] }}\"\n }\n ],\n \"temperature\": 0.7,\n \"max_tokens\": 1024\n} ",
"sendBody": true,
"sendHeaders": true,
"specifyBody": "json",
"authentication": "genericCredentialType",
"headerParameters": {
"parameters": [
{
"name": "accept",
"value": "application/json"
}
]
}
},
"credentials": {
"httpBearerAuth": {
"id": "AM38cMMgmt5pCa3J",
"name": "Bearer YOUR_TOKEN_HERE"
}
},
"typeVersion": 4.2
},
{
"id": "0d948f27-f325-4776-88f5-17993c22f382",
"name": "查询 Bytedance/seed-oss-36b-instruct(字节跳动)",
"type": "n8n-nodes-base.httpRequest",
"position": [
304,
-640
],
"parameters": {
"url": "https://integrate.api.nvidia.com/v1/chat/completions",
"method": "POST",
"options": {},
"jsonBody": "={\n \"model\": \"bytedance/seed-oss-36b-instruct\",\n \"messages\": [\n {\n \"role\": \"user\",\n \"content\": \"{{ $json['Insert your Query'] }}\"\n }\n ],\n \"temperature\": 1.1,\n \"top_p\": 0.95,\n \"max_tokens\": 4096,\n \"thinking_budget\": -1,\n \"frequency_penalty\": 0,\n \"presence_penalty\": 0,\n \"stream\": false\n}",
"sendBody": true,
"specifyBody": "json",
"authentication": "genericCredentialType"
},
"credentials": {
"httpBearerAuth": {
"id": "81rXxn13x9fyoYSK",
"name": "Bearer YOUR_TOKEN_HERE Nvidia_bytedance/seed-oss-36b-instruct"
}
},
"typeVersion": 4.2
},
{
"id": "8fb1c1df-6544-4275-af67-c7f85b9fed92",
"name": "查询 Nvidia-nemotron-nano-9b-v2(英伟达)",
"type": "n8n-nodes-base.httpRequest",
"position": [
304,
-256
],
"parameters": {
"url": "https://integrate.api.nvidia.com/v1/chat/completions",
"method": "POST",
"options": {},
"jsonBody": "{\n \"model\": \"nvidia/nvidia-nemotron-nano-9b-v2\",\n \"messages\": [\n {\n \"role\": \"system\",\n \"content\": \"/think\"\n }\n ],\n \"temperature\": 0.6,\n \"top_p\": 0.95,\n \"max_tokens\": 2048,\n \"min_thinking_tokens\": 1024,\n \"max_thinking_tokens\": 2048,\n \"frequency_penalty\": 0,\n \"presence_penalty\": 0,\n \"stream\": true\n}",
"sendBody": true,
"sendHeaders": true,
"specifyBody": "json",
"authentication": "genericCredentialType",
"headerParameters": {
"parameters": [
{}
]
}
},
"credentials": {
"httpBearerAuth": {
"id": "De0YbIT8HKmoZ2QW",
"name": "Bearer YOUR_TOKEN_HERE"
}
},
"typeVersion": 4.2
},
{
"id": "d0e9668b-1c75-4e41-90ec-684abeae0d49",
"name": "查询 DeepSeekv3_1",
"type": "n8n-nodes-base.httpRequest",
"position": [
304,
-432
],
"parameters": {
"url": "https://integrate.api.nvidia.com/v1/chat/completions",
"method": "POST",
"options": {},
"jsonBody": "={\n \"model\": \"deepseek-ai/deepseek-r1\",\n \"messages\": [\n {\n \"role\": \"user\",\n \"content\": \"{{ $('On form submission').item.json['Insert your Query'] }}\"\n }\n ],\n \"temperature\": 0.6,\n \"top_p\": 0.7,\n \"frequency_penalty\": 0,\n \"presence_penalty\": 0,\n \"max_tokens\": 4096,\n \"stream\": true\n} ",
"sendBody": true,
"sendHeaders": true,
"specifyBody": "json",
"authentication": "genericCredentialType",
"headerParameters": {
"parameters": [
{
"name": "Accept",
"value": "application/json"
}
]
}
},
"credentials": {
"httpBearerAuth": {
"id": "C39RW210A9LPDPUu",
"name": "Bearer YOUR_TOKEN_HERE Nvidia_Deepseekv31"
}
},
"typeVersion": 4.2
}
],
"active": false,
"pinData": {},
"settings": {
"executionOrder": "v1"
},
"versionId": "34faee65-7df2-4012-93bf-50660415c2d2",
"connections": {
"Merge AI Model": {
"main": [
[
{
"node": "Format Response",
"type": "main",
"index": 0
}
]
]
},
"AI Model Router": {
"main": [
[
{
"node": "Query Qwen3-next-80b-a3b-thinking (Alibaba)",
"type": "main",
"index": 0
}
],
[
{
"node": "Query Bytedance/seed-oss-36b-instruct (Bytedance)",
"type": "main",
"index": 0
}
],
[
{
"node": "Query DeepSeekv3_1",
"type": "main",
"index": 0
}
],
[
{
"node": "Query Nvidia-nemotron-nano-9b-v2 (Nvidia)",
"type": "main",
"index": 0
}
],
[
{
"node": "Query Qwen3-next-80b-a3b-thinking (Alibaba)",
"type": "main",
"index": 0
},
{
"node": "Query Bytedance/seed-oss-36b-instruct (Bytedance)",
"type": "main",
"index": 0
},
{
"node": "Query Nvidia-nemotron-nano-9b-v2 (Nvidia)",
"type": "main",
"index": 0
}
]
]
},
"Format Response": {
"main": [
[
{
"node": "Send Aggregated AI Model Responses",
"type": "main",
"index": 0
}
]
]
},
"Webhook Trigger": {
"main": [
[
{
"node": "AI Model Router",
"type": "main",
"index": 0
}
]
]
},
"Query DeepSeekv3_1": {
"main": [
[
{
"node": "Merge AI Model",
"type": "main",
"index": 2
}
]
]
},
"Query Nvidia-nemotron-nano-9b-v2 (Nvidia)": {
"main": [
[
{
"node": "Merge AI Model",
"type": "main",
"index": 3
}
]
]
},
"Query Qwen3-next-80b-a3b-thinking (Alibaba)": {
"main": [
[
{
"node": "Merge AI Model",
"type": "main",
"index": 0
}
]
]
},
"Query Bytedance/seed-oss-36b-instruct (Bytedance)": {
"main": [
[
{
"node": "Merge AI Model",
"type": "main",
"index": 1
}
]
]
}
}
}常见问题
如何使用这个工作流?
复制上方的 JSON 配置代码,在您的 n8n 实例中创建新工作流并选择「从 JSON 导入」,粘贴配置后根据需要修改凭证设置即可。
这个工作流适合什么场景?
这是一个中级难度的通用自动化工作流。适合有一定经验的用户,包含 6-15 个节点的中等复杂度工作流
需要付费吗?
本工作流完全免费,您可以直接导入使用。但请注意,工作流中使用的第三方服务(如 OpenAI API)可能需要您自行付费。
相关工作流推荐
多AI代理路由器:通过Webhook比较OpenAI、Anthropic和Groq的响应
多AI代理路由器:通过Webhook比较OpenAI、Anthropic和Groq的响应
Set
Code
Merge
+9
18 节点Cheng Siong Chin
Engineering
智能旅行套餐查找器 - 使用Skyscanner和Booking.com搜索航班和酒店
智能旅行套餐查找器:通过 Skyscanner 和 Booking.com 搜索航班与酒店
Set
Code
Gmail
+5
12 节点Cheng Siong Chin
Personal Productivity
Qwen3-VL-8B-Thinking旅行规划器
基于Skyscanner、Booking.com和Gmail的AI优化旅行行程生成器
Set
Code
Gmail
+7
18 节点Cheng Siong Chin
Personal Productivity
AI驱动的同行评审作业系统,带自动评分标准生成
使用GPT-4-nano、Slack和邮件通知自动化同行评审分配
Set
Code
Slack
+9
22 节点Cheng Siong Chin
Document Extraction
AI驱动的Grok-3健康预警系统(含家属通知功能)
基于Grok-3 AI分析的健康监测系统,含家属/医生邮件警报
If
Set
Merge
+7
17 节点Cheng Siong Chin
Personal Productivity
基于标题和摘要的AI驱动Qwen-Max期刊论文生成器
Qwen-Max:从标题/摘要生成期刊论文
Set
Code
Merge
+5
19 节点Cheng Siong Chin
Content Creation
工作流信息
难度等级
中级
节点数量11
分类-
节点类型7
作者
Cheng Siong Chin
@cschinProf. Cheng Siong CHIN serves as Chair Professor in Intelligent Systems Modelling and Simulation in Newcastle University, Singapore. His academic credentials include an M.Sc. in Advanced Control and Systems Engineering from The University of Manchester and a Ph.D. in Robotics from Nanyang Technological University.
外部链接
在 n8n.io 上查看 →
分享此工作流