使用 Qdrant 和 n8n 的混合搜索,法律 AI:检索
高级
这是一个自动化工作流,包含 17 个节点。主要使用 Set、Merge、Filter、SplitOut、Qdrant 等节点。 基于 Qdrant 和 n8n 的混合搜索,法律 AI:检索
前置要求
- •Qdrant 服务器连接信息
- •可能需要目标 API 的认证凭证
分类
未分类
工作流预览
可视化展示节点连接关系,支持缩放和平移
导出工作流
复制以下 JSON 配置到 n8n 导入,即可使用此工作流
{
"id": "h81ddl7uooV3eLBq",
"meta": {
"instanceId": "d975180a7308eb9e1d0eb6c8833136580b02ced551ba46ad477d3b76dff98527",
"templateCredsSetupCompleted": true
},
"name": "使用 Qdrant 和 n8n 的混合搜索,法律 AI:检索",
"tags": [],
"nodes": [
{
"id": "eb8d4dd7-f40b-4524-a9de-f9ef9eef0eca",
"name": "从 HuggingFace 索引数据集",
"type": "n8n-nodes-base.manualTrigger",
"position": [
-256,
400
],
"parameters": {},
"typeVersion": 1
},
{
"id": "78030f66-5331-463f-ad22-9d09f477e3f9",
"name": "全部分割",
"type": "n8n-nodes-base.splitOut",
"position": [
176,
400
],
"parameters": {
"options": {},
"fieldToSplitOut": "splits"
},
"typeVersion": 1
},
{
"id": "e6d1e789-1293-480b-a163-992b0c7a2ae8",
"name": "获取数据集分割",
"type": "n8n-nodes-base.httpRequest",
"position": [
-32,
400
],
"parameters": {
"url": "https://datasets-server.huggingface.co/splits",
"options": {},
"sendQuery": true,
"queryParameters": {
"parameters": [
{
"name": "dataset",
"value": "={{ $json.dataset }}"
}
]
}
},
"typeVersion": 4.2
},
{
"id": "cb58241e-4579-4c5b-bd65-4a20f6cf3698",
"name": "逐行划分",
"type": "n8n-nodes-base.splitOut",
"position": [
816,
400
],
"parameters": {
"options": {},
"fieldToSplitOut": "rows"
},
"typeVersion": 1
},
{
"id": "2ee71c28-71fd-4cba-87c7-c9886fb403c7",
"name": "保留测试分割",
"type": "n8n-nodes-base.filter",
"position": [
384,
400
],
"parameters": {
"options": {},
"conditions": {
"options": {
"version": 2,
"leftValue": "",
"caseSensitive": true,
"typeValidation": "strict"
},
"combinator": "and",
"conditions": [
{
"id": "52e3d8e2-825f-4e43-9d5f-e275d196b442",
"operator": {
"name": "filter.operator.equals",
"type": "string",
"operation": "equals"
},
"leftValue": "={{ $json.split }}",
"rightValue": "test"
}
]
}
},
"typeVersion": 2.2
},
{
"id": "484a82fe-93d8-439b-bbb5-e96a4b5d7861",
"name": "获取测试查询",
"type": "n8n-nodes-base.httpRequest",
"position": [
592,
400
],
"parameters": {
"url": "=https://datasets-server.huggingface.co/rows",
"options": {},
"sendQuery": true,
"queryParameters": {
"parameters": [
{
"name": "dataset",
"value": "={{ $json.dataset }}"
},
{
"name": "config",
"value": "={{ $json.config }}"
},
{
"name": "split",
"value": "={{ $json.split }}"
},
{
"name": "length",
"value": "=100"
}
]
}
},
"typeVersion": 4.2
},
{
"id": "20f67ae7-6631-4602-aa20-42a382db12ae",
"name": "查询点",
"type": "n8n-nodes-qdrant.qdrant",
"position": [
2144,
416
],
"parameters": {
"limit": 1,
"query": "{\n \"fusion\": \"rrf\"\n}",
"prefetch": "=[\n {\n \"query\": {\n \"text\": \"{{ $json.question }}\",\n \"model\": \"mixedbread-ai/mxbai-embed-large-v1\"\n },\n \"using\": \"mxbai_large\",\n \"limit\": 25\n },\n {\n \"query\": {\n \"text\": \"{{ $json.question }}\",\n \"model\": \"qdrant/bm25\"\n },\n \"using\": \"bm25\",\n \"limit\": 25\n }\n]",
"resource": "search",
"operation": "queryPoints",
"collectionName": {
"__rl": true,
"mode": "list",
"value": "legalQA_test",
"cachedResultName": "legalQA_test"
},
"requestOptions": {}
},
"credentials": {
"qdrantApi": {
"id": "LVjhdCt8pAJjLyt5",
"name": "Qdrant account 2"
}
},
"typeVersion": 1
},
{
"id": "445ace25-f900-4bcf-9f7d-9bc1db662867",
"name": "合并",
"type": "n8n-nodes-base.merge",
"position": [
2320,
608
],
"parameters": {
"mode": "combine",
"options": {},
"combineBy": "combineAll"
},
"typeVersion": 3.2
},
{
"id": "c631ce99-a672-499f-bbf3-e740ef431884",
"name": "遍历项目",
"type": "n8n-nodes-base.splitInBatches",
"position": [
1776,
400
],
"parameters": {
"options": {
"reset": false
}
},
"typeVersion": 3
},
{
"id": "c075a745-ed50-459f-87dd-101a559e4523",
"name": "保留数据集中有答案的问题",
"type": "n8n-nodes-base.filter",
"position": [
1056,
400
],
"parameters": {
"options": {},
"conditions": {
"options": {
"version": 2,
"leftValue": "",
"caseSensitive": true,
"typeValidation": "strict"
},
"combinator": "and",
"conditions": [
{
"id": "d1120153-1852-42c0-8b0a-084e8c3190d3",
"operator": {
"type": "number",
"operation": "gt"
},
"leftValue": "={{ $json.row.answers.length }}",
"rightValue": 0
}
]
}
},
"typeVersion": 2.2
},
{
"id": "94f78e9b-f9eb-4179-9844-d6e23bc79751",
"name": "保留问题和 ID",
"type": "n8n-nodes-base.set",
"position": [
1280,
400
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "961c95d9-c803-404b-b4b6-cb66a8a33928",
"name": "id_qa",
"type": "string",
"value": "={{ $json.row.id }}"
},
{
"id": "0fefba06-4567-479c-9eb5-efbb3e13e743",
"name": "question",
"type": "string",
"value": "={{ $json.row.question }}"
}
]
}
},
"typeVersion": 3.4
},
{
"id": "08f67e31-ba8f-47fd-bc78-f352a160d4fd",
"name": "聚合评估",
"type": "n8n-nodes-base.aggregate",
"position": [
2032,
224
],
"parameters": {
"options": {},
"aggregate": "aggregateAllItemData",
"destinationFieldName": "eval"
},
"typeVersion": 1
},
{
"id": "413ade44-d27d-4c49-862f-afb9d4e18bf6",
"name": "评估中 isHits 的百分比",
"type": "n8n-nodes-base.set",
"position": [
2256,
224
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "5bca1a50-3e41-4f50-8362-cb7b185b50f6",
"name": "Hits percentage",
"type": "number",
"value": "={{ ($json.eval.filter(item => item.isHit).length * 100) / $json.eval.length}}"
}
]
}
},
"typeVersion": 3.4
},
{
"id": "c0840c22-8954-4937-80d9-f32741b81e1e",
"name": "便签 2",
"type": "n8n-nodes-base.stickyNote",
"position": [
-96,
144
],
"parameters": {
"color": 5,
"width": 1520,
"height": 464,
"content": "## 从 Hugging Face 数据集获取用于评估检索的问题(已索引到 Qdrant)"
},
"typeVersion": 1
},
{
"id": "742e68ae-0013-4dda-a818-4485ff80a986",
"name": "便签 4",
"type": "n8n-nodes-base.stickyNote",
"position": [
1696,
-256
],
"parameters": {
"color": 5,
"width": 1088,
"height": 1120,
"content": "## 检查法律问答数据集上简单混合搜索的质量"
},
"typeVersion": 1
},
{
"id": "d4a32298-02ef-4f9e-b22d-3f30e9b74eb2",
"name": "便签1",
"type": "n8n-nodes-base.stickyNote",
"position": [
-1344,
-128
],
"parameters": {
"width": 1008,
"height": 960,
"content": "## 评估法律数据集上的混合搜索"
},
"typeVersion": 1
},
{
"id": "56a5efd8-ed3f-46f7-85c8-966536f24a13",
"name": "isHit = 是否找到正确答案",
"type": "n8n-nodes-base.set",
"position": [
2512,
608
],
"parameters": {
"include": "selected",
"options": {},
"assignments": {
"assignments": [
{
"id": "80089820-cc55-4b74-966e-b50a3f4b6e36",
"name": "isHit",
"type": "boolean",
"value": "={{ $json.result.points[0].payload.ids_qa.includes($json.id_qa) }}"
}
]
},
"includeFields": "id_qa,question",
"includeOtherFields": true
},
"typeVersion": 3.4
}
],
"active": false,
"pinData": {
"Index Dataset from HuggingFace": [
{
"json": {
"dataset": "isaacus/LegalQAEval"
}
}
]
},
"settings": {
"executionOrder": "v1"
},
"versionId": "20b38566-7985-4139-98a3-6b275e85a9cb",
"connections": {
"Merge": {
"main": [
[
{
"node": "isHit = If we Found the Correct Answer",
"type": "main",
"index": 0
}
]
]
},
"Query Points": {
"main": [
[
{
"node": "Merge",
"type": "main",
"index": 0
}
]
]
},
"Divide Per Row": {
"main": [
[
{
"node": "Keep Questions with Answers in the Dataset",
"type": "main",
"index": 0
}
]
]
},
"Aggregate Evals": {
"main": [
[
{
"node": "Percentage of isHits in Evals",
"type": "main",
"index": 0
}
]
]
},
"Keep Test Split": {
"main": [
[
{
"node": "Get Test Queries",
"type": "main",
"index": 0
}
]
]
},
"Loop Over Items": {
"main": [
[
{
"node": "Aggregate Evals",
"type": "main",
"index": 0
}
],
[
{
"node": "Merge",
"type": "main",
"index": 1
},
{
"node": "Query Points",
"type": "main",
"index": 0
}
]
]
},
"Get Test Queries": {
"main": [
[
{
"node": "Divide Per Row",
"type": "main",
"index": 0
}
]
]
},
"Get Dataset Splits": {
"main": [
[
{
"node": "Split Them All Out",
"type": "main",
"index": 0
}
]
]
},
"Split Them All Out": {
"main": [
[
{
"node": "Keep Test Split",
"type": "main",
"index": 0
}
]
]
},
"Keep Questions & IDs": {
"main": [
[
{
"node": "Loop Over Items",
"type": "main",
"index": 0
}
]
]
},
"Index Dataset from HuggingFace": {
"main": [
[
{
"node": "Get Dataset Splits",
"type": "main",
"index": 0
}
]
]
},
"isHit = If we Found the Correct Answer": {
"main": [
[
{
"node": "Loop Over Items",
"type": "main",
"index": 0
}
]
]
},
"Keep Questions with Answers in the Dataset": {
"main": [
[
{
"node": "Keep Questions & IDs",
"type": "main",
"index": 0
}
]
]
}
}
}常见问题
如何使用这个工作流?
复制上方的 JSON 配置代码,在您的 n8n 实例中创建新工作流并选择「从 JSON 导入」,粘贴配置后根据需要修改凭证设置即可。
这个工作流适合什么场景?
这是一个高级难度的通用自动化工作流。适合高级用户,包含 16+ 个节点的复杂工作流
需要付费吗?
本工作流完全免费,您可以直接导入使用。但请注意,工作流中使用的第三方服务(如 OpenAI API)可能需要您自行付费。
相关工作流推荐
使用 Qdrant 和 n8n 的混合搜索,法律 AI:索引
基于 Qdrant 和 n8n 的混合搜索,法律 AI:索引
If
Set
Limit
+9
37 节点Jenny
YNAB自动预算
使用GPT-5-Mini自动分类YNAB交易并发送Discord通知
If
Set
Merge
+11
29 节点spencer owen
AI Summarization
使用GPT-5 Mini、Jira和表单界面自动化敏捷项目设置
使用GPT-5 Mini、Jira和表单界面自动化敏捷项目设置
Set
Jira
Gmail
+15
42 节点Billy Christi
Multimodal AI
在可视化参考库中探索n8n节点
在可视化参考库中探索n8n节点
If
Ftp
Set
+93
113 节点I versus AI
Other
(Duc)深度研究市场模板
集成PerplexityAI研究和OpenAI内容的多层级WordPress博客生成器
If
Set
Xml
+28
132 节点Daniel Ng
AI
源发现 - 自动搜索更及时的信息源
多平台源发现系统,集成 SerpAPI、DuckDuckGo、GitHub、Reddit 和 Bluesky
Set
Code
Limit
+18
68 节点Hybroht
Market Research