使用RAG(Pinecone和OpenAI)与GitHub OpenAPI规范对话
高级
这是一个Engineering、AI领域的自动化工作流,包含 17 个节点。主要使用 HttpRequest、ManualTrigger、Agent、ChatTrigger、LmChatOpenAi 等节点,结合人工智能技术实现智能自动化。 与GitHub API文档对话:基于RAG的聊天机器人,使用Pinecone和OpenAI
前置要求
- •可能需要目标 API 的认证凭证
- •OpenAI API Key
- •Pinecone API Key
使用的节点 (17 个)
工作流预览
可视化展示节点连接关系,支持缩放和平移
导出工作流
复制以下 JSON 配置到 n8n 导入,即可使用此工作流
{
"id": "FD0bHNaehP3LzCNN",
"meta": {
"instanceId": "69133932b9ba8e1ef14816d0b63297bb44feb97c19f759b5d153ff6b0c59e18d"
},
"name": "使用RAG(Pinecone和OpenAI)与GitHub OpenAPI规范对话",
"tags": [],
"nodes": [
{
"id": "362cb773-7540-4753-a401-e585cdf4af8a",
"name": "当点击\"测试工作流\"时",
"type": "n8n-nodes-base.manualTrigger",
"position": [
0,
0
],
"parameters": {},
"typeVersion": 1
},
{
"id": "45470036-cae6-48d0-ac66-addc8999e776",
"name": "HTTP请求",
"type": "n8n-nodes-base.httpRequest",
"position": [
300,
0
],
"parameters": {
"url": "https://raw.githubusercontent.com/github/rest-api-description/refs/heads/main/descriptions/api.github.com/api.github.com.json",
"options": {}
},
"typeVersion": 4.2
},
{
"id": "a9e65897-52c9-4941-bf49-e1a659e442ef",
"name": "Pinecone Vector Store",
"type": "@n8n/n8n-nodes-langchain.vectorStorePinecone",
"position": [
520,
0
],
"parameters": {
"mode": "insert",
"options": {},
"pineconeIndex": {
"__rl": true,
"mode": "list",
"value": "n8n-demo",
"cachedResultName": "n8n-demo"
}
},
"credentials": {
"pineconeApi": {
"id": "bQTNry52ypGLqt47",
"name": "PineconeApi account"
}
},
"typeVersion": 1
},
{
"id": "c2a2354b-5457-4ceb-abfc-9a58e8593b81",
"name": "默认数据加载器",
"type": "@n8n/n8n-nodes-langchain.documentDefaultDataLoader",
"position": [
660,
180
],
"parameters": {
"options": {}
},
"typeVersion": 1
},
{
"id": "7338d9ea-ae8f-46eb-807f-a15dc7639fc9",
"name": "递归字符文本分割器",
"type": "@n8n/n8n-nodes-langchain.textSplitterRecursiveCharacterTextSplitter",
"position": [
740,
360
],
"parameters": {
"options": {}
},
"typeVersion": 1
},
{
"id": "44fd7a59-f208-4d5d-a22d-e9f8ca9badf1",
"name": "当收到聊天消息时",
"type": "@n8n/n8n-nodes-langchain.chatTrigger",
"position": [
-20,
760
],
"webhookId": "089e38ab-4eee-4c34-aa5d-54cf4a8f53b7",
"parameters": {
"options": {}
},
"typeVersion": 1.1
},
{
"id": "51d819d6-70ff-428d-aa56-1d7e06490dee",
"name": "AI 代理",
"type": "@n8n/n8n-nodes-langchain.agent",
"position": [
320,
760
],
"parameters": {
"options": {
"systemMessage": "You are a helpful assistant providing information about the GitHub API and how to use it based on the OpenAPI V3 specifications."
}
},
"typeVersion": 1.7
},
{
"id": "aed548bf-7083-44ad-a3e0-163dee7423ef",
"name": "OpenAI 聊天模型",
"type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
"position": [
220,
980
],
"parameters": {
"options": {}
},
"credentials": {
"openAiApi": {
"id": "tQLWnWRzD8aebYvp",
"name": "OpenAi account"
}
},
"typeVersion": 1.1
},
{
"id": "dfe9f356-2225-4f4b-86c7-e56a230b4193",
"name": "窗口缓冲内存",
"type": "@n8n/n8n-nodes-langchain.memoryBufferWindow",
"position": [
420,
1020
],
"parameters": {},
"typeVersion": 1.3
},
{
"id": "4cf672ee-13b8-4355-b8e0-c2e7381671bc",
"name": "向量存储工具",
"type": "@n8n/n8n-nodes-langchain.toolVectorStore",
"position": [
580,
980
],
"parameters": {
"name": "GitHub_OpenAPI_Specification",
"description": "使用此工具获取有关GitHub API的信息。该数据库包含OpenAPI v3规范。"
},
"typeVersion": 1
},
{
"id": "1df7fb85-9d4a-4db5-9bed-41d28e2e4643",
"name": "OpenAI 聊天模型1",
"type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
"position": [
840,
1160
],
"parameters": {
"options": {}
},
"credentials": {
"openAiApi": {
"id": "tQLWnWRzD8aebYvp",
"name": "OpenAi account"
}
},
"typeVersion": 1.1
},
{
"id": "7b52ef7a-5935-451e-8747-efe16ce288af",
"name": "便签",
"type": "n8n-nodes-base.stickyNote",
"position": [
-40,
-260
],
"parameters": {
"width": 640,
"height": 200,
"content": "## 在向量数据库中索引内容"
},
"typeVersion": 1
},
{
"id": "3508d602-56d4-4818-84eb-ca75cdeec1d0",
"name": "便签1",
"type": "n8n-nodes-base.stickyNote",
"position": [
-20,
560
],
"parameters": {
"width": 580,
"content": "## 查询和响应生成"
},
"typeVersion": 1
},
{
"id": "5a9808ef-4edd-4ec9-ba01-2fe50b2dbf4b",
"name": "生成用户查询嵌入向量",
"type": "@n8n/n8n-nodes-langchain.embeddingsOpenAi",
"position": [
480,
1400
],
"parameters": {
"options": {}
},
"credentials": {
"openAiApi": {
"id": "tQLWnWRzD8aebYvp",
"name": "OpenAi account"
}
},
"typeVersion": 1.2
},
{
"id": "f703dc8e-9d4b-45e3-8994-789b3dfe8631",
"name": "Pinecone向量存储(查询)",
"type": "@n8n/n8n-nodes-langchain.vectorStorePinecone",
"position": [
440,
1220
],
"parameters": {
"options": {},
"pineconeIndex": {
"__rl": true,
"mode": "list",
"value": "n8n-demo",
"cachedResultName": "n8n-demo"
}
},
"credentials": {
"pineconeApi": {
"id": "bQTNry52ypGLqt47",
"name": "PineconeApi account"
}
},
"typeVersion": 1
},
{
"id": "ea64a7a5-1fa5-4938-83a9-271929733a8e",
"name": "生成嵌入向量",
"type": "@n8n/n8n-nodes-langchain.embeddingsOpenAi",
"position": [
480,
220
],
"parameters": {
"options": {}
},
"credentials": {
"openAiApi": {
"id": "tQLWnWRzD8aebYvp",
"name": "OpenAi account"
}
},
"typeVersion": 1.2
},
{
"id": "65cbd4e3-91f6-441a-9ef1-528c3019e238",
"name": "便签2",
"type": "n8n-nodes-base.stickyNote",
"position": [
-820,
-260
],
"parameters": {
"width": 620,
"height": 320,
"content": "## n8n中的RAG工作流"
},
"typeVersion": 1
}
],
"active": false,
"pinData": {},
"settings": {
"executionOrder": "v1"
},
"versionId": "2908105f-c20c-4183-bb9d-26e3559b9911",
"connections": {
"HTTP Request": {
"main": [
[
{
"node": "Pinecone Vector Store",
"type": "main",
"index": 0
}
]
]
},
"OpenAI Chat Model": {
"ai_languageModel": [
[
{
"node": "AI Agent",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"Vector Store Tool": {
"ai_tool": [
[
{
"node": "AI Agent",
"type": "ai_tool",
"index": 0
}
]
]
},
"OpenAI Chat Model1": {
"ai_languageModel": [
[
{
"node": "Vector Store Tool",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"Default Data Loader": {
"ai_document": [
[
{
"node": "Pinecone Vector Store",
"type": "ai_document",
"index": 0
}
]
]
},
"Generate Embeddings": {
"ai_embedding": [
[
{
"node": "Pinecone Vector Store",
"type": "ai_embedding",
"index": 0
}
]
]
},
"Window Buffer Memory": {
"ai_memory": [
[
{
"node": "AI Agent",
"type": "ai_memory",
"index": 0
}
]
]
},
"When chat message received": {
"main": [
[
{
"node": "AI Agent",
"type": "main",
"index": 0
}
]
]
},
"Generate User Query Embedding": {
"ai_embedding": [
[
{
"node": "Pinecone Vector Store (Querying)",
"type": "ai_embedding",
"index": 0
}
]
]
},
"Pinecone Vector Store (Querying)": {
"ai_vectorStore": [
[
{
"node": "Vector Store Tool",
"type": "ai_vectorStore",
"index": 0
}
]
]
},
"Recursive Character Text Splitter": {
"ai_textSplitter": [
[
{
"node": "Default Data Loader",
"type": "ai_textSplitter",
"index": 0
}
]
]
},
"When clicking ‘Test workflow’": {
"main": [
[
{
"node": "HTTP Request",
"type": "main",
"index": 0
}
]
]
}
}
}常见问题
如何使用这个工作流?
复制上方的 JSON 配置代码,在您的 n8n 实例中创建新工作流并选择「从 JSON 导入」,粘贴配置后根据需要修改凭证设置即可。
这个工作流适合什么场景?
这是一个高级难度的工作流,适用于Engineering、AI等场景。适合高级用户,包含 16+ 个节点的复杂工作流
需要付费吗?
本工作流完全免费,您可以直接导入使用。但请注意,工作流中使用的第三方服务(如 OpenAI API)可能需要您自行付费。
相关工作流推荐
AI智能助手:与Supabase存储和Google Drive文件对话
AI智能助手:与Supabase存储和Google Drive文件对话
If
Set
Wait
+20
62 节点Mark Shcherbakov
Engineering
与Supabase存储中文件对话的AI智能体
与Supabase存储中文件对话的AI智能体
If
Merge
Switch
+15
33 节点Mark Shcherbakov
Engineering
基于文档的带记忆聊天机器人,使用 OpenAI、Pinecone 和 Google Drive
基于文档的带记忆聊天机器人,使用 OpenAI、Pinecone 和 Google Drive
Merge
Airtable
Aggregate
+15
22 节点Sally
AI
用于股票财报分析的RAG工作流
用于股票财报分析的AI驱动RAG工作流
Google Docs
Google Drive
Google Sheets
+11
18 节点Mihai Farcas
AI
支持文本、语音、图像和PDF的AI驱动WhatsApp聊天机器人(RAG)
支持文本、语音、图像和PDF的AI驱动WhatsApp聊天机器人(RAG)
Set
Code
Switch
+15
35 节点NovaNode
Engineering
使用OpenAI评估RAG响应准确性:文档基础性指标
使用OpenAI评估RAG响应准确性:文档基础性指标
Set
Evaluation
Http Request
+13
25 节点Jimleuk
Engineering
工作流信息
难度等级
高级
节点数量17
分类2
节点类型12
作者
Mihai Farcas
@mihailtdFull-stack developer with 5+ years streamlining healthcare processes. Proficient in NodeJS, VueJS, MongoDB, PostgreSQL, Kubernetes, and n8n. Ready to optimize your workflows – book a consult via my link.
外部链接
在 n8n.io 上查看 →
分享此工作流